学术报告( 邓嘉龙 9.11)
度量测度空间的拟共形映射和曲率( Quasiconformal mappings and curvatures on metric measure spaces)
发布人:杨晓静
发布日期:2022-09-09
主题
度量测度空间的拟共形映射和曲率( Quasiconformal mappings and curvatures on metric measure spaces)
活动时间
-
活动地址
腾讯会议808 586 680
主讲人
邓嘉龙 博士后 清华大学丘成桐数学科学中心
主持人
黄虹智
摘 要: Originating in the cartography that represents the regions of the surface of the earth on a Euclidean piece of paper and beginning in the works of Tissot (1880s)Grötzsch (1920s), Lavrentief (1920s) and others, the study of quasiconformal mappings on the n-dimensional Euclidean spaces has a rich history of over one hundred years.In an attempt to develop higher-dimensional quasiconformal mappings on metric measure spaces with curvature conditions, i.e. from Ahlfors to Alexsandrov, we will show that the a quasiconformal homeomorphism of a non-collapsed RCD(0, n) spaces (n ≥ 2) with Euclidean growth volume is quasisymmetric, if it maps bounded sets to bounded sets.