学术报告(杨东勇 3.2)

Boundedness of some harmonic analysis operators in the Bessel setting

发布人:杨晓静 发布日期:2023-03-01
主题
Boundedness of some harmonic analysis operators in the Bessel setting
活动时间
-
活动地址
腾讯会议
主讲人
杨东勇 教授(厦门大学)
主持人
宋亮

摘要: Let $\lambda \in (-1/2, \infty)$. Consider the following two operators on $R_+=(0,\infty)$:

   $$\Delta_\lambda=-\frac{d^2}{dx^2}-\frac{2\lambda}{x} \frac{d}{dx},

     S_\lmabda=-\frac{d^2}{dx^2}+\frac{\lambda^2-\lambda}{x^2}.$$

 In this talk, we will discuss the Lp -boundedness of oscillations, variations and Littlewood-Paley functions, associated with $\Delta_\lambda$ and $ S_\lmabda $ respectively. We will also discuss endpoint cases and weighted cases. These results are based on some joint works with Xuan Thinh Duong et al..